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Abstract The aim of this work is to present a contin-

uos mathematical model that characterizes and enforces

connectivity in a topology optimization problem. That

is accomplished by constraining the second eigenvalue

of an auxiliary eigenproblem, solved together with the

governing state law in each step of the iterative pro-

cess. Our density-based approach is illustrated with 2d

and 3d numerical examples in the context of structural

design.

Keywords connectivity · topology optimization ·
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1 Introduction

Connectivity is an important issue in topology opti-

mization (TO) that affects in a different way depend-

ing on the physical meaning of the phases involved in

the problem. In structural design, for instance, while

optimized designs are connected, it is quite often that

several enclosed holes appear in minimum compliance

structures [1–4]. Those holes are desirable from a stiff-

ness perspective, but lead to a distribution of the void

phase which is not connected, and that definitely com-

plicates the fabrication of the final structure.

A. Donoso · E. Aranda
Departamento de Matemáticas, ETSII
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Something similar happens at the nanoscale when

tailoring dispersion properties in photonic crystal waveg-

uides (PhCWs). In the case of slow-light 2d structures,

the usual is considered a super-cell, to be periodically

repeated, made from a dielectric substrate with air-

holes. Typically, the design domain occupies a central

region in the super-cell. When optimizing the dielectric

material distribution, sometimes solid regions appear

as free-floating members in the final layouts that are

impossible to realize [5, 6]. Additionally, enclosed air-

voids appear in the design of 3d band-gap structures.

Those pores are advantageous from optimization point

of view, but not easy to be manufactured [7–9]. It was

precisely in [5] where a technique to avoid the appear-

ance of isolated components in PhCWs was proposed. It

was achieved by forcing that the fundamental free me-

chanical vibration frequency of the super-cell to stay

above a given parameter.

Another scenario where lack of connectivity becomes

relevant takes place when performing electrode design

in piezo modal transducers. Typical electrode patterns

correspond to polarization profiles which take on two

values only, i.e. either positive or negative polarity, which

are the phases here. In general, electrodes hardly ever

present profiles of both phases connected, and they typ-

ically exhibit isolated features of like-polarity [10, 11],

which makes it difficult the wiring schemes.

As far as the authors’ knowledge, the first strat-

egy to tackle connectivity in structural design was the

virtual temperature method (VTM) [12, 13]. The idea

consists in solving an auxiliary linear thermal problem

where void/solid are treated as conductive/insulator

material, respectively, and some parts of the bound-

ary behave as heat sinks. There, void connectivity is

imposed by constraining the maximum temperature in

the void phase. VTM was also extended to the molding
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constraint [14], and to the electrode connectivity prob-

lem in [15] by solving two auxiliary thermal problems,

one for each phase. And in [16], VTM was modified

by introducing a nonlinear heat source. That improve-

ment lets generate a uniformly distributed temperature

field in all regions covered by enclosed voids, so that

the temperature threshold value is independent on the

problem.

In the last years, other appealing strategies, most of

them supported by physical arguments, have been pro-

posed to address the connectivity issue in structural de-

sign [16–21]. Furthermore, above reference [9] presents

different types of constraints (some of them are exten-

sions of [5] and [12]) for designing topology optimized

periodic structures like 3d photonic crystals without

isolated components of material or enclosed pores.

Recently, the authors have developed a new method

for imposing connectivity constraints which is based on

known results of spectral graph theory. It has been suc-

cessfully applied to structural design [22] and to elec-

trode design [23]. Inspired by those works, we propose

here a continuous mathematical model that lets both

characterize and enforce connectivity in any of the two

phases (or even in both) involved in a topology opti-

mization problem, and more importantly, regardless of

the physical situation. Somehow, this approach presents

some similarities with the technique used in [5] and the

VTM itself, but we lay particular emphasis on the fact

that our model rests on mathematical basis from spec-

tral theory.

The paper is organized as follows. Section 2 presents

a continuous mathematical model based on the eigen-

values of the Neumann-Laplacian operator that suc-

ceeds in detecting whether a phase in a domain where

coexisting two phases is connected or not. That can be

achieved by solving an appropriate eigenvalue problem.

Section 3 provides a TO-formulation that imposes con-

nectivity over the void phase in structural design. Sev-

eral numerical examples that corroborate our method

are included here. Finally, some conclusions and future

work are commented in the last section.

2 A model for connectivity

It is known (see [24, Chapter VI, §1.3]) that if ω is a

bounded open Lipschitzian set in RN , the first eigen-

value of the Laplacian operator with Neumann bound-

ary condition, the so-called Neumann-Laplacian, is zero;

and if ω is connected, the second eigenvalue is strictly

positive. Also if ω is not connected, we obtain its eigen-

values by collecting and reordering the eigenvalues of

each connected components. Therefore, the connectiv-

ity of a set can be characterized looking at the second

eigenvalue of the Neumann-Laplacian: the set is con-

nected if and only if the second eigenvalue is positive.

Our idea here is to identify the connectivity of a set

defined by a density function which is a solution of a

minimum compliance problem in TO. Ideally, the solu-

tion of such a problem would be a characteristic func-

tion of the set where we put the material, but typically

what we obtain is a density function ρ ∈ [0, 1] defined

in the reference domain Ω. So, if a sequence of den-

sity functions ρn converges (pointwise) to a character-

istic function χω, we would like to establish a relation-

ship between the second eigenvalue of the Neumann-

Laplacian in ω and the limit of the second eigenvalue

of the problems

−div((ε+ (1− ε)ρn)∇φ) = λρnφ in Ω,

∂φ

∂~n
= 0 on ∂Ω,

 (1)

where ε > 0 is fixed. Notice that we need to include this

parameter in order to have a well posed problem.

First, using [25, Theorem 2.3.3] we have the conver-

gence of the eigenvalues of (1) to the eigenvalues of the

problem

−div((ε+ (1− ε)χω)∇φ) = λχωφ in Ω,

∂φ

∂~n
= 0 on ∂Ω.

 (2)

The following result relates the second eigenvalue of the

Neumann-Laplacian in ω with the second eigenvalue of

(2):

Theorem 1 Let µ be the second eigenvalue of the prob-

lem

−∆φ = λφ in ω,

∂φ

∂~n
= 0 on ∂ω.

 (3)

If λ denotes the second eigenvalue of (2), then there

exists a constant C > 0 such that λ− µ ≤ Cε.

Proof Using the Rayleigh quotient (see [25]), we have

the characterization of the second eigenvalue of problem

(3):

µ = min
φ∈H1(ω),∫
ω
φ dx=0

∫
ω

|∇φ|2 dx∫
ω

φ2 dx

.

Let φ∗ such that the minimum is attained,

µ =

∫
ω

|∇φ∗|2 dx∫
ω

(φ∗)2 dx

, φ∗ ∈ H1(ω),

∫
ω

φ∗ dx = 0.
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Let we consider an open bounded domain Ω′ such

thatΩ ⊂⊂ Ω′. The extension theorem in Sobolev spaces

(see [26, §5.3, Theorem 1]) guarantees the existence of

u∗ ∈ H1(RN ) such that u∗ = φ∗ in ω and u∗ has sup-

port in Ω′. This extension also satisfies

‖u∗‖H1(RN ) ≤ C̃‖φ∗‖H1(ω). (4)

Now, we define u = u∗−α, where α =
1

|Ω|

∫
Ω

u∗ dx.

Then u ∈ H1(Ω) with zero mean value, and therefore

λ = min
v∈H1(Ω),∫
Ω
v dx=0

∫
Ω

((1− ε)χω + ε) |∇v|2 dx∫
Ω

χωv
2 dx

≤

∫
Ω

((1− ε)χω + ε) |∇u|2 dx∫
Ω

χωu
2 dx

=

(1− ε)
∫
ω

|∇u|2 dx+ ε

∫
ω

|∇u|2 dx+ ε

∫
Ω\ω
|∇u|2 dx∫

ω

u2 dx

(5)

Notice that, as u∗ = φ∗ in ω then ∇u∗ = ∇φ∗ in ω,

and, it is clear that ∇u = ∇u∗, so the first two terms

in the numerator of (5) are equal to
∫
ω
|∇φ∗|2 dx.

The third term in this numerator∫
Ω\ω
|∇u|2 dx ≤

∫
Ω′
|∇u∗|2 dx ≤ ‖u∗‖2H1(RN )

and using (4)∫
Ω\ω
|∇u|2 dx ≤ C̃2‖φ∗‖2H1(ω).

On the other hand, we can bound the denominator

of (5):∫
ω

u2 dx =

∫
ω

(u∗ − α)2 dx

=

∫
ω

(u∗)2 dx+ α2|ω| − 2α

∫
ω

u∗ dx

=

∫
ω

(φ∗)2 dx+ α2|ω| ≥
∫
ω

(φ∗)2 dx,

(remember that u∗ = φ∗ in ω). So finally, substituting

at (5)

λ ≤

∫
ω

|∇φ∗|2 dx+ εC̃2‖φ∗‖2H1(ω)∫
ω

(φ∗)2 dx

= µ+ Cε.

This finishes the proof. ut

This result guarantees that the second eigenvalue

of a domain ω and the second eigenvalue of problem

(2) are closed enough, what can be used to capture the

connectivity of a domain.

It is quite common to introduce a shifting method

in the eigenvalues’ computation, so we will change λ by

λ − 1 in problems (1)–(3), and instead of looking at 0

eigenvalue, we will focus on 1 eigenvalue.

As an example, let us consider Ω be the unit square,

and ω the subset defined by the two black rectangles of

Figure 1. The exact eigenvalues of (3) are known,1 and

the first five (with shifting) correspond to 1, 1, 1 + π2,

1 + 4π2, 1 + π2

(0.4)2 . Note that there are two eigenvalues

equal to 1 because ω is not connected. Table 1 shows

the numerical approximation of shifted problem (2) for

different values of ε, where a finite element (FE) dis-

cretization over two different meshes (100 × 100 and

200× 200) have been considered.

0.4

0.2

0.15

Fig. 1 Ω (unit square) and ω (two black rectangles).

While the first eigenvalues are always 1, the sec-

ond eigenvalues are strictly greater than 1 because of

problem (2) is set in Ω, which is connected. However,

we can see that, for small ε, the second eigenvalues are

closed to 1, son we can derive from here that ω is not

connected.

However, problem (2) is an ideal situation. In prac-

tise, what we have is a problem like (1), with a density

ρ with intermediate values between 0 and 1. So, in the

same spirit as the SIMP (Solid Isotropic Method with

Penalization) does, we introduce the problem

−div(w(ρ)∇φ) = (λ− 1)ρφ in Ω,

∂φ

∂n
= 0 on ∂Ω,

 (6)

where

w(ρ) = (1− ε)ρr + ε,

and r is a power that penalizes intermediate densities.

1 The eigenvalues of the Neumann-Laplacian for a rectan-

gle (0, L) × (0, l) without shifting are µm,n = π2
(

m2

L2 + n2

l2

)
,

m,n ≥ 0.
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ε = 10−3 ε = 10−5 ε = 10−7 ε = 10−9 Exact

λ2
1.0736276916 1.0007367590 1.0000073676 1.0000000736

1.000
1.0735863857 1.0007363432 1.0000073634 1.0000000736

λ3
10.9107576249 10.8708198860 10.8704202074 10.8704162105

10.8696044010
10.9101331588 10.8702108966 10.8698113739 10.8698073787

λ4
40.5748127523 40.4922414054 40.4914155337 40.4914072750

40.4784176043
40.5650486484 40.4824986791 40.4816730208 40.4816647642

λ5
62.8431902703 62.7180075845 62.7167553598 62.7167428375

62.6850275068
62.8192328609 62.6942182563 62.6929677180 62.6929552126

Table 1 Numerical eigenvalues of problem (2) for different values of ε with meshes 100 × 100 (upright font) and 200 × 200
(slanted font).

So, the idea of our method relies on imposing that

the second eigenvalue of (6) must be strictly greater

than 1. Therefore, if ρ is closed to a characteristic func-

tion of some subset ω, then ω has to be connected. In

some way, a high value of r introduces an additional re-

quirement for connectivity which favours convergence,

but at the same time the rest of eigenvalues are dis-

torted.

Table 2 shows the numerical results for problem (6)

with different values of r, where ρ is a density obtained

by filtering (with the usual conic filter of radius 0.03)

the characteristic function χω of Figure 1. Note that

the second eigenvalue still detects the no connectivity

of ω.

r = 1 r = 3 r = 6 r = 12 Exact
λ2 1.0009 1.0009 1.0008 1.0007 1.0000
λ3 10.8709 9.6161 4.2232 1.5346 10.8696
λ4 40.4924 35.3811 4.2415 1.5358 40.4784
λ5 62.6677 56.0582 4.2500 1.5444 62.6850

Table 2 Eigenvalues for problem (6) for a non binary density,
with different values of r in a 100 × 100 mesh and ε = 10−5.

3 Optimal design without internal voids

The classical compliance minimization problem in topol-

ogy optimization leads to connected designs because of

physical considerations: forces need to be propagated

along the structure and isolated features of material do

not contribute to increase stiffness. At the same time,

the stiffness requirement typically results in the forma-

tion of several enclosed holes that can complicate the

fabrication of the final design (specially for 3d prob-

lems). Those internal holes in an structure can be seen

as different connected components of the set where we

do not put the material, or in terms of the density

function ρ, the set where ρ = 0. Therefore, a simple

way to avoid the formation of internal holes is imposing

the connectivity of that set, or, in terms of the eigen-

value problem (6), forcing that the second eigenvalue

be strictly greater than 1, where

w(ρ) = (1− ε)(1− ρ)r + ε. (7)

Notice that we have changed ρ by 1− ρ as we are now

focused on the connectivity of the void phase.

However, it is still possible to have a disconnected

void phase without any internal hole, as we can see at

Figure 1, where there are no internal holes in the struc-

ture, but void phase is not connected. This situation

can be easily avoided if we consider a frame around Ω

where ρ = 0. We denote by Ω] to this extended domain

(see Figure 2), and still denote by ρ the extension of

ρ by null values outside of Ω. Now, it is clear that the

number of enclosed holes are equal to the number of

connected components of the void phase minus one. So

having no internal holes is equivalent to a connected

void phase in Ω].

Fig. 2 Ω (dotted line) and the extended domain Ω]. Void
phase is now connected.

Therefore, discretizing (6) by FE leads to consider

the discrete problem{
(K(ρ)− (λ2 − 1)M(ρ)) Φ2 = 0

ΦT
2M(ρ)Φ2 = 1

(8)

where K andM are the global stiffness and mass ma-

trices, respectively, ρ corresponds to the vector of dis-

cretized densities in the extended domain (extended

with null values), and (λ2,Φ2) is the pair eigenvalue

and its associatedM-orthonormal eigenvector, respec-

tively.
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Table 3 shows, in an example of a real minimum

compliance structure, how internal holes are detected

and compare the effect of considering or not the ex-

tended domain (a small outside frame of void phase of

three elements size). In this case, three isolated void

areas are identified in the structure delimited by the

dashed-line (i.e., without void frame), but they collapse

in only two when considering the void frame. Here, as

in the rest of numerical experiments that will appear

below we have used r = 12 and ε = 10−5.

Void without frame Void with frame
λ1 1 1
λ2 1.0005 1.0028
λ3 1.0011 1.3085
λ4 1.2154 1.4103

Table 3 The first four eigenvalues for the problem (8) for the
white phase (void)

It is worth mentioning that discrete approach (8)

somehow reminds us the one developed by the authors

in [22] based on spectral graph theory. In fact, that

previous work has definitely inspired us for developing

the continuous mathematical model proposed here for

characterizing void connectivity. Consequently, it gives

us the key to enforce connectivity constraints in TO-

problems: that is, imposing that λ2 > 1 in Ω].

4 Formulation and numerical examples

Having in mind the considerations of the previous sec-

tion, the problem formulation for minimum compliance

that incorporates void-phase connectivity may be writ-

ten as

min
ρ∈[0,1]

FTU

s.t.

{
vT ρ̂E ≤ V0|Ω|,

λ2 > 1,

where F are the external force vectors and U are the

global displacements, so that the objective function is

the usual compliance. U is obtained solving the (dis-

crete) elasticity system

K(ρ̂E)U = F, (9)

and K is the global stiffness matrix. The first constraint

corresponds to the volume constraint, where v is a vec-

tor containing the measure of the elements, V0 is the

(given) volume fraction and |Ω| is the measure of the

design domain. And the second constraint corresponds

to the second eigenvalue of the problem{
(K(ρ̂C)− (λ2 − 1)M(ρ̂C)) Φ2 = 0

ΦT
2M(ρ̂C)Φ2 = 1

(10)

that is, the void connectivity constraint.

As usual in TO, the density is filtered with a typical

conic filter and then projected with a smoothed Heavi-

side function. We have use the one proposed in [27]

Pβ(ρe) = e−β(1−ρe) − (1− ρe)e−β ,

but we have considered different proyections for each

subproblem. While for the elasticity problem and vol-

ume constraint, the values of β are gradually increased

as usual to force 0/1 designs, the strategy for the com-

putation of eigenvalues in (10) is to fix β = 8 from the

beginning in order to better identify holes. This is why

we have different notations for the filtered and proyec-

tion densities: ρ̂E is the density used in the computa-

tion of (9) and volume constraint, and ρ̂C is the density

used in (10), which has been previously extended to the

domain Ω].

With regard to the sensitivity analysis, it just re-

quires special mention the derivative of an eigenvalue,

something that is well-known, given by

∂λ2
∂ρe

= ΦT
2

(
∂K
∂ρe
− (λ2 − 1)

∂M
∂ρe

)
Φ2.

Note that ρe = 0 on the elements of the extension, so

the partial derivatives do not change.

A continuation strategy has been implemented in

the connectivity constraint, beginning with λ2 > 1.05

and ending with λ2 > 1.15, increasing the value of the

eigenvalue in 0.01 for each 50 iterations.

Two examples in 2d, a cantilevered beam with a

load applied in the middle point and a supported bridge

with a vertical load in the middle point as well, are used

to initially corroborate our method. Optimized struc-

tures in both case studies with inner holes and without

them are depicted in Fig. 3 and Fig. 4, respectively. A

more interesting example takes place in 3d, previously

studied in [21]. There, a platform type-structure with

null displacements in the red region of the bottom sur-

face is subject to uniform pressure on the top surface. A

quarter structure discretized into 40× 40× 30 elements

is simulated by symmetry. Three layers of elements on

the top of the structure are chosen as a non-design do-

main. Optimized designs with and without connectivity

constraints for V0 = 0.3 are showed in Fig. 5.
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(a) (b)

Fig. 3 Example of a cantilevered beam with a load in the
middle point. (a) minimum compliance design; (b) the same
but forcing that void phase to be connected in the extended
domain.

(a)

(b)

Fig. 4 Example of a supported bridge with a load in the
middle point. (a) minimum compliance design; (b) the same
but forcing that void phase to be connected in the extended
domain.

5 Final remarks

This work proposes a continuous model that imposes

void connectivity in structural design, thus avoiding the

formation of inner holes in topology optimized struc-

tures. The idea behind the method can be used to en-

force connectivity in other physical contexts of interest

in a straightforward manner, and we plan to explore it

in a near future.
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(a)

Inner holes

(b)

(c)

Fig. 5 Example of a minimum compliance platform. (a) de-
sign domain and boundary conditions; (b) optimized struc-
ture without connectivity constraints; (c) the same with con-
nectivity constraints.
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