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Abstract

Background: The pandemic caused by COVID-19 has challenged hospital managers to
deal with the planning of their resources to meet a never-before-seen demand for unscheduled
hospitalizations and intensive care. In Spain, highly hit for the pandemic, Government set strict
measures of social distancing.

Objective: Assist a professional in the management of hospital resources in order to define
dimensions and make decisions given the extraordinary demand caused by COVID-19.

Design: SIR model parameters fitting based on local data.
Results: We provide the hospital with the parameters required to test different scenarios

of social contact reduction.
Settings:
Region - 3 hospitals in Catalonia (Spain), covering 200.000 people.
Data period time - March 30th - April 14th.
Lock-down date - March 14th (tightened measures from March 30th to April 9th, nowadays

facing measures lightening).
Limitations: Due to urgent need of insights, daily update of information and closeness to

hospitalization census peak, we limited our analysis to the adjustment of the SIR model to data.
We didn’t have access to ICU data in the moment when the analysis was performed so we

couldn’t fit severity parameters.
Conclusion: We assisted the hospital managers on providing paremeter values to launch

SIR model simulations with the aim of making informed decisions on resources needs.
We found that lock-down impact on R0 was about 50% reduction when starting to take

effect.

1 Introduction

The pandemic caused by COVID-19 has placed the world’s health care systems under a level of
stress that is, in many cases, unprecedented. The urgent demand for tests, protective equipment,
respirators and specialized medical facilities has forced governments and institutions to work in a
coordinated manner to provide provisions to health care centers. It is the managers of the hospitals
themselves, however, that must deal with the planning of their resources to meet a never-before-seen
demand for unscheduled hospitalizations and intensive care.
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These key actors in the crisis must be able to simulate scenarios for the pandemic’s evolution in
order to anticipate situations of extreme saturation through measures such as home hospitalization,
referral to other centers or cancellation of interventions and non-urgent appointments.

We have collaborated with a network of hospitals in Catalonia (Spain) to provide them, even
given the uncertainty regarding key aspects of the SARS-CoV-2 coronavirus, with a daily forecast
of the hospital census and patients in intensive care, taking into account the approximate hospi-
talization date for the first person tested positive for COVID-19, the severity of the disease, and
the isolation measures decreed. Our contribution is focused on the parameterization of the CHIME
model (COVID-19 Hospital Impact Model for Epidemics) developed by Penn Medicine (University
of Pennsylvania Health System)

2 State of the Art

Mathematical modeling has been a key factor in the development of Epidemiology. The first work
on smallpox, formulated in the 18th century, paved the way, in the 20th century, for the birth of
the deterministic modeling of epidemics. This has been fundamental in the fight against diseases
such as malaria and measles.

Today, the mathematical models used in Epidemiology can be broadly classified into [2]:

• Compartmental models: divide the population into groups, depending on their status in
the epidemic (Susceptible, Infected, Recovered, etc.) and model the transition of individuals
between groups.

• Models focused on individuals: are based on numerical simulations that take into account
each individual’s behavior.

• Hybrid models: combine the two previous approaches.

2.1 Epidemiological calculators on the Internet

The rise of the Internet, together with the opensource movement, have democratized scientific
knowledge and have helped to connect professionals from diverse disciplines in order to develop and
evolve all kinds of models and applications.

For the subject at hand, we can find, at the click of a button, epidemiological calculators that
integrate deterministic evolution models (SIR/SEIR) for the COVID-19 pandemic.

Three of the most representative are:

• Goh Epidemic Calculator

Developed by Gabriel Goh, researcher at OpenAI, this integrates a SEIR model (Susceptible
-> Exposed -> Infected -> Recovered) and predicts the pandemic’s evolution for a certain
population.

Its inputs are variables related to disease transmission and severity. It takes into account the
control measures applied, which are aimed at reducing social contact.

• COVID-19 Spread vs Healthcare Capacity Model (Allison Hill)

Also a SEIR model, but in this case different levels of infection severity are considered (textitI1:
Mild, I2: Severe, I3: Critical).
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Figure 1: Goh Epidemic Calculator

Figure 2: Hill Epidemiological Calculator

Consists of several tabs in which infection evolution can be observed without any control
measure (Spread), as well as their influence according to the intensity with which they are
applied (Intervention) and the saturation level of the health care centers (Capacity).

The author of the model is Allison Hill, a researcher at Harvard.

• Penn University Locally Informed Simulation to Predict Hospital Capacity Needs

The Penn University epidemiological calculator is based on a SIR model and aims to predict
the timing and magnitude of the peak of hospital admissions resulting from COVID-19. It also
focuses on the volume of patients that will require intensive care and mechanical respiration.

Of course, the adoption of any of these tools to assist in crucial decision-making requires the
informed use of a scientific procedure for adaptation to each specific case, and evaluation of how
adequate the fit is.

These precautions are especially important at a time when research is moving forward at a
frenetic pace due to the urgent need to anticipate what is going to happen: a large part of the new
discoveries regarding COVID-19 are pending review.
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Figure 3: Penn Chime graphical interface

2.2 PENN CHIME

Developed by scientists at the University of Pennsylvania (Perelman School of Medicine and Penn
Medicine Predictive Healthcare), Penn CHIME is a SIR model for estimating COVID-19’s impact
on the resources of the 3 hospitals in the area of influence.

The objective pursued was the prediction of the hospitalization peak for virus-positive patients
and the number of ICU beds and ventilators needed to meet demand. The team worked against
the clock: just two days after the team was commissioned to create projections of the pandemic’s
evolution, it built the model and integrated it into a scenario visualization tool.

This tool, available on the Internet, can be adapted to any hospital institution in the world. The
code is open and available on GitHub. There is also a small community on Slack to share knowledge
and consult with experts and other contributors in regards to the model’s technical details and its
application in other states and countries. For all these reasons, we chose to focus our efforts on
parameterizing this model to the specific case of the hospitals with which we worked. In addition,
the Goh model had been used for the hospital, and we think the possibility of comparing the results
to be interesting.

3 SIR model: PENN CHIME

As we saw, the SIR epidemiological model is a compartmental model. Specifically, it divides the
population into three groups:

• Susceptible individuals: those who lack immunity and therefore may become Infected if ex-
posed to the infectious agent.

• Infected individuals: those who suffer from the disease (whether or not they show symptoms)
and are virus transmitters; that is, they can infect Susceptible individuals.

• Recovered individuals: those who, having been infected, are no longer infected and considered
themselves immune, either due to having overcome the disease or because they have died. (As
of today, reinfection has not been ruled out for the SARS-CoV-2 coronavirus.)
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With these premises, the growth and evolution of the disease, from an instant t to an instant
t+1 is modeled according to the following equations:

St+1 = St − βStIt

It+1 = It + βStIt − γIt

Rt+1 = Rt + γIt

β is the effective contagion rate: β = τ ∗ c, where τ is the transmissibility of the virus and c is
the number of people exposed.

γ is the inverse of the mean recovery time.
Finally, the quotient β

γ is what is known as R0, the basic reproductive number. It represents
the average number of people that will be infected by a single person.

As can be deduced, this number will be high if:

• the transmissibility of the pathogen is high,

• there are many people exposed, or

• the recovery time is long; that is, those infected are contagious for many days.

The measures for restricting social contact thus have a direct impact on R0, as c (the
number of people exposed) decreases.

The Penn CHIME model estimates the value R0 and Rt (contagion rate in moment t) based on
the doubling time at a given instant, Td, and the recovery time, Tr:

R0 =
2

1
Td − 1 + 1

Tr
1
Tr

Based on the size of the population in the hospital’s area of influence and on various indicators
of disease severity, a predictive forecast is made for those admitted with COVID-19, as well as the
number of people who will need intensive care.

The table 1 presents the complete list of parameters [3].
To these, we must add the reference date, current date, which is related to the volume of patients

admitted. Furthermore, in one of the model’s evolutions, the date on which the social distancing
measures took effect was added as an input; we will examine this in detail in the corresponding
section.

4 Our Contribution

Our work with the Penn CHIME model has focused on the proper selection of parameters to
generate forecasts. Hospital management has provided us with information regarding the reference
population, as well as objective data on admissions and tests.

We have processed this data in order to construct a time series for the hospital census of COVID-
19 patients, based on which we have assessed the adjustment for the model (square root of the mean
square error).
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HOSPITAL
Regional Population Population size in the hospital area (initial value

for S - Susceptible).
Hospital Market Share (%) Quota of patients for the hospital in the region

(can be estimated as the number of beds available
with respect to the total number of beds in the
region).

Currently Hospitalized
COVID-19 patients

Number of COVID-19 patients admitted, at a
given time.

EXPANSION AND CONTAGION
Date of the first hospitalized
case

(Optional) Date of first hospitalization for
COVID-19.

Doubling time before current
date

(Does not apply if the first date of hospitaliza-
tion for COVID-19 is known)
Number of days for the number infected to
double.
Related to R0 and pushes the rate of new cases
in the first phase of expansion.

Social distancing (% reduction
in social contact)

The estimate of how much social contact is re-
duced in the region compared to no social dis-
tancing at all.

SEVERITY OF THE DISEASE
Hospitalization % (total infec-
tion)

Percentage of infected cases requiring hospitaliza-
tion.

ICU % (total infection) Percentage of infected cases requiring intensive
care.

Ventilated % (total infections) Percentage of infected cases requiring mechanical
ventilation.

Infectious days Number of days that an infected person can infect
another.

Average Hospital Length of
stay (days)

Average number of days of admission for
COVID-19 patients.

Average Days in ICU Average number of ICU admission days for
COVID-19 patients.

Average Days on Ventilator Average number of days for which COVID-19 pa-
tients require mechanical ventilation.

Table 1: CHIME model parameters
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We have also relied on the information managed by the hospital, published by the Generalitat
de Catalunya and other sources, to define a range of possible values for the doubling time and days
of infection.

We have been in continuous contact with the hospital, and have shared the optimal configuration,
calibrated with the passage of time, with the hospital staff.

Coincidentally, the study began when the peak of new admissions was very near, meaning that
the true application of the simulation was not prediction, but rather verification and anticipation of
the resource decongestion rate, as well as analysis of the impact of modifications in social distancing
policies.

5 Data

5.1 Description and transformation

The data used to determine the true census of hospitalized COVID-19 patients was as follows:

• Admissions: history of patient hospitalizations and discharges, since 2019, updated every
few days.The fields most relevant for our study were:

StartDate | EndDate | FileID | Diagnosis | BedId | Age | CausDischarge

If a patient did not show an EndDate, it means that she remained hospitalized.

• PCR test: list of tests by date and file number.

Up to three tests were performed per patient, and the results could be Positive, Undetectable
or No result.

Construction of the COVID-19 patient time series required:

1. determination of the patients admitted on a specific date.

2. flagging of the positives for COVID-19.

Thus, on a specific date f computation of those admitted for COVID-19 was determined by the
number of different FileID that they fulfilled:

– StartDate ≤ f

– EndDate > f or EndDate = null

– Positive result in any of the tests carried out.

That is, only those with a positive test were considered COVID-19 patients, and not all those
who had, at the outset, a diagnosis compatible with the disease: pneumonia, respiratory failure,
etc.

We created an interactive dashboard with the aim of allow the hospital to validate how we were
interpreting data.
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Figure 4: Doubling time for admitted patients

5.2 Problems associated with the nature of the data

As mentioned, flagging of the positives was directly associated with the test results. Despite the
adoption of objective determination criteria, it was sometimes necessary to repeat the test sev-
eral times, and the result could take several days. This caused the information to change in the
subsequent data updates that we received.

In general, the number of positives increased with each new version. The final days of data were
particularly affected, and could be subject to an increase of 15% to 20%.

The data for the final days of each update were thus not used to monitor the model fit.

6 Parameterization

• The hospital’s reference population is 200,000 inhabitants (100% Market Share).

• Hospital management estimated that the percentage of infected patients requiring hospitaliza-
tion was around 2.5%; of these, 10% may require intensive care (and mechanical ventilation).

• The average length of stay was about 10 days (14 for severe, 9 for mild).

6.1 Date of first admission vs. Doubling Time

The first PCR tests began to be administered on March 17, however, many of the patients who
tested positive on that date and on subsequent dates had already been hospitalized for some time.
Determination of the date of the first case may thus be inaccurate, so we opted for the doubling
time criteria: that is, the time it takes for the number of people infected to double. In this case, our
reference is the number of people hospitalized (which represents a percentage of the total number
of people infected).

In the dates prior to confinement, we can observe that the number of people hospitalized
doubled every 4 days (Figure 4).
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Figure 5: Relationship between R0, doubling time and recovery days

Often, the doubling time observed in those hospitalized tends to be significantly less than the
doubling time for positives [3]; for the Penn Chime model, this parameter, together with the recovery
time, provides the value R0.

The public health management body in Catalonia (CatSalud) estimated [1] that R0 had an
approximate value of 2.3. We generated the table of R0’s for a wide range of doubling and
recovery time values (table 5); the observed value of 4 days of doubling time corresponds to about
7 days of recovery time.

As we can see, there are other parameter combinations that give an R0 result close to 2.3. The
prediction will be similar for any of these, but our main objective was to feed the model with a
proper R0 and not going further in infectious day or doubling time estimation.

6.2 Initial phase and reduction of social contact

The model requires the establishment of a reference date that is prior to the date that measures to
reduce social contact were put into effect; that is, at the time when the pandemic was spreading
naturally. For example, onMarch 11th, in full exponential growth, there were 20 people admitted
with COVID-19.

CatSalud [1] estimated that from March 23rd onwards, the effects of confinement began to be
seen. However, in the case of our reference hospital, the decrease in the growth rate appears to be
around March 26th/27th, as we can see in Figure 6.

6.2.1 Reduction of social contact

The percentage of reduction in social contact, obligated by the government-established confinement,
modifies the value of R0, with a direct impact on the rate of contagion.

This occurred in two phases of distinct intensity and duration: the initial phase, affecting
mobility, schools, shops, etc. and another, more restrictive, phase, which limited the rest of non-
essential activities (industries deemed non-essential) and lasted two weeks, before reverting back to
the measures of the previous phase.

The ability to generate predictions with different restriction levels is one of the great strengths of
the CHIME calculator, since it allows the epidemic’s growth to be compared according to different
strategies that could be adopted by governments.

In fact, organizations such as the Imperial College [4], have carried out studies to assess the op-
portunity and effects of adopting more or less restrictive measures to limit economic activity, school
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Figure 6: Evolution of admitted patients

closings, and the confinement of the elderly, in combination with hygiene measures, information
provided to citizens, etc.

To aid in calculating the effective impact of the reduction in contact during the pandemic,
Google created a mobility report for each country, which was broken down by region.

The mobility report results for Catalonia indicate the following:

• an 81% reduction in non-food and leisure shops.

• a 73% reduction in transportation stations.

• a 65% reduction in workplaces.

• a 63% reduction in parks.

• a 24% reduction in pharmacies and food stores.

In contrast, mobility in residential areas increased by 30%.
There are obvious limitations in establishing a reduction percentage that affects everyone equally,

during a pandemic in which highly localized foci have been detected; we opted to carry out different
simulations with values of decreased social contact between 40% and 70%.

7 Results

To execute the different simulations, we used the Python version of the original model, with some
improvements from its contributors.

Our development consisted of transforming the model into a Sklearn Regressor; this allowed us
to use the available methods for error calculation (RSME), etc.

The model fit, in the pandemic free growth phase, is very high; this allows us confidence in the
selection of the parameters made, especially in the R0 value provided by CatSalud.

In regard to the different reduction scenarios, the results of the CHIME model, when compared
to the actual data, reflected an effective reduction of close to 50% (Figure 7). In this
scenario, the curve "flattened", avoiding a very alarming growth in the number of cases, only with
slightly less restrictive measures (40% - peak of 464 infected on April 21st).
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Figure 7: Social contact reduction scenarios

The real peak of those infected occurred in the hospital on around April 2nd, with 322
people hospitalized; table 2 shows when this maximum would have been reached and with what
values for the different scenarios, as well as the estimated mean error.

% Reduction Peak Date Peak Hospitalizations RSME
40 2020-04-21 464.40 19.00
50 2020-04-01 301.42 11.71
60 2020-03-30 267.52 34.48
70 2020-03-28 249.28 54.31

Table 2: Prediction error according to distancing

Most likely, the impact of the measures expected by the experts, was not drastic enough. A
tightening of these measures was thus established, halting all non-essential economic activity for 2
weeks. These measures took effect on March 29th, and had an effect not so much on the maximum
number of people hospitalized as on the rate of decline in new cases.

With these new measures, it was no longer possible to continue adjusting the model as it was
configured.

8 Conclusions

The results of the PENN CHIME predictive model were compared with other predictive models
created internally by the Department of Epidemiology and hospital management support, as well
as those created by regional entities such as CatSalut.

Using these predictive models, the possible pandemic’s behaviour could be predicted in the
short term, and different scenarios could be simulated depending on the variables introduced into
the model. Special interest was given to the social distancing variable and to how it affected the
prediction of cases and the curve’s evolution. We found that the model adjusted pretty well setting
a 50% social contact reduction.

Based on the different predictive scenarios, the number of operational beds needed was calcu-
lated, as well as the time required for them to be available (space adjustments, acquisition of new
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units). According to the curve’s evolution, these openings were likewise adapted, as well as the
needs of the healthcare personnel.
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