Local Markets and Rational Expectations^{*}

Pascal MOSSAY †

This Version. March 2006.

Abstract

Our objective is to develop a framework where consumers make optimal consumption and location decisions in a spatial economy. Local markets are assumed perfectly competitive and migration is modelled as an investment decision. We show that the location problem is a problem in the calculus of variations. Existence of a solution is proved under mild conditions.

Keywords: local markets, migration, expectations, spatial economy

*I would like to thank H. Polemarchakis, J. Thisse, and I. Ekeland for useful comments and suggestions, as well as Michel Willem for useful help. The usual disclaimer applies.

[†]Departamento de Fundamentos del Análisis Económico, Universidad de Alicante, Email: mossay@merlin.fae.ua.es.

Our objective is to develop a framework where consumers make optimal consumption and location decisions in a spatial economy. We consider a spatial economy with a continuum of locations distributed along a circle, $s \in \mathbb{S} = [0, 2\Pi]$. Time is denoted by $t \in [t_0, T]$. There are H types of agents denoted by h, who are distributed along the real line \mathbb{S} . The density of type-hagents in location s, at time t, is denoted by $A^h(s, t)$. There are L local goods denoted by l. Each type-h agent is continuously endowed with a constant bundle $\mathbf{e}^h \in \mathbb{R}^L_+$ over time, and cares about sequences of consumption $\mathbf{X}^h(t)$ $\in \mathbb{R}^L$. The instantaneous utility function represented by U(.) is the same for all agents.

First we study how consumption and migration decisions are simultaneously taken in terms of given intertemporal prices - that is in terms of a spatial distribution of prices which evolves over time. Consider a type-h agent initially located in s_0^h at time t_0 . His problem is

$$\max_{s^{h}(t),\mathbf{X}^{h}(t)} \int_{t_{0}}^{T} \left\{ U\left[\mathbf{X}^{h}(t)\right] - \frac{1}{2k^{h}} \left[\frac{ds^{h}}{dt}(t)\right]^{2} \right\} dt$$

st. $\mathbf{p}(s^{h}(t),t) \bullet \left[\mathbf{X}^{h}(t) - \mathbf{e}^{h}\right] = 0, \forall t \in [t_{0},T]$

with
$$s^h(t_0) = s_0^h$$
 (P)

where k^h measures the migration cost incurred by a type-*h* agent.

The consumption problem is

$$\max_{\mathbf{X}^{h}(t)} U \left[\mathbf{X}^{h}(t) \right]$$

st. $\mathbf{p}(s^{h}(t), t) \bullet \left[\mathbf{X}^{h}(t) - \mathbf{e}^{h} \right] = 0$ (\mathbb{P}_{1})

The location problem can be written as

$$\max_{s(t)} J[s] = \max_{s(t)} \int_{t_0}^T \left\{ U(s(t), t) - \frac{1}{2k} \dot{s}^2(t) \right\} dt \qquad (\mathbb{P}_2)$$

with $s(t_0) = s_0$

where U(s(t), t) denotes $U\left[\mathbf{X}^{h}[\mathbf{p}(s^{h}(t), t), \mathbf{e}^{h}]\right]$.

Proposition 1 If the price $\mathbf{p}(s(t), t)$ is continuous and the utility function U is bounded from above, then a solution \overline{s} to (\mathbb{P}_2) exists in the set $H^1(]t_0, T[)$.

The proof is in five steps, see Dacorogna (1992) or Buttazo and al. (1998).

(i) First we fix the class of admissible functions to the Sobolev space $W^{1,2}(]t_0,T[)$ and the notion of weak convergence which is denoted by $s_n \rightharpoonup s$.

(ii) Next we show that the functional J is well defined on $W^{1,2}$ and bounded from above, so that $\sup J$ is finite. This implies that we can find a maximizing sequence in $W^{1,2}$, i.e. a sequence of functions $s_n \in W^{1,2}$, $n = 1, 2, \dots$ such that $J(s_n) \longrightarrow \sup_{W^{1,2}} J$.

(iii) Then we prove that J is sequentially upper semi continuous on $W^{1,2}$ with respect to the weak convergence. That is, we have to verify that $s_n \rightharpoonup \overline{s}$ implies $J(\overline{s}) \ge \limsup J(s_n)$.

(iv) Finally we show the sequential compactness of $W^{1,2}$ with respect to the weak convergence. In fact, it suffices to prove that any - or at least one - maximizing sequence contains a convergent subsequence with a limit \overline{s} in $W^{1,2}$.

(v) Then as $\{s_n\}$ is a maximizing sequence, \overline{s} is necessarily a solution to (\mathbb{P}_2) .

Theorem 1 (Weak Euler-Lagrange) Suppose U(s(t), t) is C^1 , $|\partial_s U| \leq \delta(s), \delta(s) C^0, \delta'(s) \geq 0$. If $\overline{s}(t) \in W^{1,2}$ is a maximizer of J[s], with $\overline{s}(t_0) = s_0$, then $\overline{s}(t)$ satisfies the weak form of the Euler-Lagrange equation,

$$\int_{t_0}^T \left(\partial_s U(\overline{s}(t), t) \varphi - \frac{1}{k} \dot{\overline{s}} \dot{\varphi} \right) dt = 0 , \, \forall \varphi \in W^{1,2} : \varphi(t_0) = 0$$

Theorem 2 (Euler-Lagrange) Suppose U(s,t) is C^1 with respect to s. If $\overline{s}(t) \in W^{1,2}$ is a maximizer of J[s], with $\overline{s}(t_0) = s_0$, then $\overline{s}(t)$ satisfies the strong form of the Euler-Lagrange equation,

$$\overline{s} = -k\partial_s U(\overline{s}(t), t)$$

Theorem 3 (Regularity) Suppose U(s,t) is C^k with respect to $s, k \ge 1$. If $\overline{s}(t) \in W^{1,2}$ is a maximizer of J[s], with $\overline{s}(t_0) = s_0$, then $\overline{s}(t) \in C^{k+1}$.

References

- Buttazzo, G., Giaquinta, M. and S. Hildenbrandt (1998), "Onedimensional Variational Problems - An Introduction," Oxford Science Publications.
- [2] Dacorogna, B. (1992), "Intoduction au Calcul des Variations," Cahiers Mathématiques de l'Ecole Polytechnique Fédérale de Lausanne, Presses polytechniques et universitaires romandes.
- [3] Ekeland, I. (1986), "Some Variational Problems from Mathematical Economics", in A. Ambrosetti and R. Lucchetti (eds), *Mathematical Economics*, Lectures Notes in Mathematics, Springer-Verlag.
- [4] Mossay, P. (2006), Spatial Stability, Regional Science and Urban Economics, forthcoming.
- [5] Sonnenschein, H. (1981), "Price Dynamics and the Disappearance of Short Run Profits: An Example", *Journal of Mathematical Economics*, 8, 201-204.
- [6] Sonnenschein, H. (1982), "Price Dynamics Based on the Adjustment of Firms," American Economic Review, 72, 1088-1096.