New Methods for the Condition monitoring of Level Crossings
2012 - F. P. Garcia Marquez, D. J. Pedregal Tercero, C. Roberts
International Journal of System Science (2012)
Level crossings represent a high risk for railway systems. This paper demonstrates the potential to improve maintenance management through the use of intelligent condition monitoring coupled with reliability centred maintenance (RCM). RCM combines advanced electronics, control, computing and communication technologies to address the multiple objectives of cost effectiveness, improved quality, reliability and services. RCM collects digital and analogue signals utilising distributed transducers connected to either point-to-point or digital bus communication links. Assets in many industries use data logging capable of providing post-failure diagnostic support, but to date little use has been made of combined qualitative and quantitative fault detection techniques. The research takes the hydraulic railway level crossing barrier (LCB) system as a case study and develops a generic strategy for failure analysis, data acquisition and incipient fault detection. For each barrier the hydraulic characteristics, the motor's current and voltage, hydraulic pressure and the barrier's position are acquired. In order to acquire the data at a central point efficiently, without errors, a distributed single-cable Fieldbus is utilised. This allows the connection of all sensors through the project's proprietary communication nodes to a high-speed bus. The system developed in this paper for the condition monitoring described above detects faults by means of comparing what can be considered a ‘normal’ or ‘expected’ shape of a signal with respect to the actual shape observed as new data become available. ARIMA (autoregressive integrated moving average) models were employed for detecting faults. The statistical tests known as Jarque–Bera and Ljung–Box have been considered for testing the model.