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Abstract

Spectral methods offer very high spatial resolution for a wide range of nonlinear
wave equations. Because of this, it should be desirable, for the best computational
efficiency, to use also high-order methods in time, but without very strict restrictions
on the step size, due to numerical instability.

In this communication, we consider the exponential time differencing fourth-order
Runge-Kutta (ETDRK4) method. This scheme was derived by Cox and Matthews in
[4] and modified by Kassam and Trefethen in [12]. We have studied its amplification
factor and its stability region, which gives us an explanation of its good behavior
for dissipative and dispersive problems. In [10], we have applied this method to the
nonlinear cubic Schrödinger equation in one and two space-variables. Later, in [11],
we have simulated the blow-up of semi-linear diffusion equations.

1. Introduction

The spectral methods have been shown to be remarkably successful when solving time-
dependent partial differential equations (PDEs). The idea is to approximate a solution
u(x, t) by a finite sum v(x, t) =

∑N
k=0

ak(t)φk(x), where the function class φk(x), k =
0, 1, . . . , N , will be trigonometric for x−periodic problems and, otherwise, an orthogonal
polynomial of Jacobi type, with Chebyshev polynomials being the most important special
case. To determine the expansion coefficients ak(t), we will focus on the pseudo-spectral

methods, where it is required that the coefficients make the residual equal to zero at as
many (suitably chosen) spatial points as possible. Three books [6], [2] and [16] have been
contributed to supplement the classic references [8] and [3].

When a time-dependent PDE is discretized in space with a spectral discretization, the
result is a coupled system of ordinary differential equations (ODEs) in time; this is the
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notion of the method of lines (MOL), and the resulting set of ODEs is stiff. The stiff-
ness problem may be even exacerbated sometimes, for example, when using Chebyshev
polynomials (see Chapter 10 of [16] and its references). The linear terms are primarily
responsible for the stiffness with rapid exponential decay of some modes (as with a dissi-
pative PDE) or a rapid oscillation of some modes (as with a dispersive PDE). Therefore,
for a time-dependent PDE which combines low-order nonlinear terms with higher-order
linear terms, it is desirable to use a higher-order approximation in space and time.

For the sake of space, we only show a numerical simulation for the blow-up of semi-
linear diffusion equations, referring to [10] for the nonlinear Schrödinger equation.

2. Exponential Time Differencing fourth-order Runge-Kutta

Method

The numerical method considered in this communication is an exponential time dif-

ferencing (ETD) scheme. These methods arose originally in the field of computational
electrodynamics [15]. Later on, they have recently received attention in [1] and [14], but
the most comprehensive treatment, and in particular the ETD with Runge-Kutta time
stepping, is in the paper by Cox and Matthews [4].

The idea of the ETD methods is similar to the method of the integrating factor (see for
example [2] or [16]): we multiply both sides of a differential equation by some integrating
factor, then we make a change of variable that allows us to solve the linear part exactly
and, finally, we use a numerical method of our choice to solve the transformed nonlinear
part.

When a time-dependent PDE in the form

ut = Lu + N (u, t), (1)

where L and N are the linear and nonlinear operators respectively, is discretized in space
with a spectral method, the result is a coupled system of ordinary differential equations
(ODEs):

ut = Lu + N(u, t). (2)

Multiplying (2) by the term e−Lt, known as the integrating factor, gives

e−Ltut − e−Lt
Lu = e−Lt

N(u, t). (3)

Following [1], we integrate (3) over a single time step of length h, getting

un+1 = eLhun + eLh

∫ h

0

e−Lτ
N(u(tn + τ), tn + τ)dτ. (4)

The various ETD methods come from how one approximates the integral in this expression.
Cox and Matthews derived in [4] a set of ETD methods based on the Runge-Kutta time
stepping, which they called ETDRK methods. In this communication we consider the
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ETDRK4 fourth-order scheme, which has the following expression:

an = eLh/2un + L
−1(eLh/2 − I)N(un, tn),

bn = eLh/2un + L
−1(eLh/2 − I)N(an, tn + h/2),

cn = eLh/2an + L
−1(eLh/2 − I)(2N(bn, tn + h/2) − N(un, tn)),

un+1 = eLhun + h−2
L
−3{[−4I − hL + eLh(4I − 3hL + (hL)2)]N(un, tn)

+ 2[2I + hL + eLh(−2I + hL)](N(an, tn + h/2) + N(bn, tn + h/2))

+ [−4I − 3hL − (hL)2 + eLh(4I − hL)]N(cn, tn + h)}.

More detailed derivations of the ETD schemes can be found in [4].

Unfortunately, in this form ETDRK4 suffers from numerical instability when L has
eigenvalues close to zero, because disastrous cancellation errors arise. Kassam and Trefet-
hen have studied in [12] those instabilities and have found that they can be removed by
evaluating a certain integral on a contour that is separated from zero. The procedure is
basically to change the evaluation of the coefficients, which is mathematically equivalent
to the original ETDRK4 scheme of [4], although in [5] it has been shown to have the effect
of improving the stability of integration in time. Moreover, it can be easily implemented
and the impact on the total computing time is small. In fact, we have always incorporated
this idea in our MATLAB c© codes.

The stability analysis of the ETDRK4 method is as follows (see [1], [7] or [4]). For the
nonlinear ODE

du

dt
= cu + F (u), (5)

being F (u) the nonlinear part, we suppose that there exists a fixed point u0; this means
that cu0 +F (u0) = 0. Linearizing about this fixed point, if u is the perturbation of u0 and
λ = F ′(u0), then

ut = cu + λu (6)

and the fixed point u0 is stable if Re(c + λ) < 0.

The application of the ETDRK4 method to (6) leads to a recurrence relation invol-
ving un and un+1. Introducing the previous notation x = λh, y = ch and using the
Mathematica c© algebra package, we obtain the following amplification factor:

un+1

un
= r(x, y) = c0 + c1x + c2x

2 + c3x
3 + c4x

4, (7)

where

c0 = ey,

c1 =
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4 e
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c3 =
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It is important to remark that computing c1,c2, c3 and c4 by the above expressions suffers
from numerical instability for y close to zero. Because of that, for small y, we will use
instead their asymptotic expansions:

c1 = 1 + y +
1

2
y2 +

1

6
y3 +

13

320
y4 +

7

960
y5 + O(y6),

c2 =
1

2
+

1

2
y +

1

4
y2 +

247

2880
y3 +

131

5760
y4 +

479

96768
y5 + O(y6),

c3 =
1

6
+

1

6
y +

61

720
y2 +

1

36
y3 +

1441

241920
y4 +

67

120960
y5 + O(y6),

c4 =
1

24
+

1

32
y +

7

640
y2 +

19

11520
y3 −

25

64512
y4 −

311

860160
y5 + O(y6).

3. The semi-linear diffusion equations

Many mathematical models have the property to develop singularities in a finite time
T : for instance, the formation of shocks in Burgers’ equation without viscosity. Often, this
singularity represents an abrupt change in the properties of the models, so it is extremely
important for a chosen numerical method to reproduce that change accurately.

In this section, we consider the semi-linear parabolic equation

ut = ∆u + up, p > 1, x ∈ R
N , t > 0, (8)

with the initial condition

u(x, 0) = u0(x), x ∈ R
N , (9)

where u0(x) is continuous, nonnegative and bounded.

The local (in time) existence of positive solutions of (8),(9) follows from standard
results, but the solution may develop singularities in finite time. In [13], it is proved that
there exists a critical exponent pc(N) = 1+ 2

N , such that for 1 < p < pc(N), any nontrivial
solution of (8),(9) blows up at a finite time T . However, if p > pc(N), there exist global
solutions if the initial value is sufficiently small.

The one-dimensional semi-linear parabolic equation is

ut = uxx + up, p > 1, x ∈ R, t > 0. (10)
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The critical exponent is pc = 3 and for 1 < p < 3 the only nonnegative global (in time)
solution is u = 0. Another question is the asymptotic behavior of the solutions as the
blow-up time is approached, for which we refer to [9].

Although problem (10) is not mathematically periodic, we consider that the solution is
close to zero at the ends of the interval [−L,L] for L sufficiently large, so it can be regarded
as periodic in practice and we can use the Fourier transform. Hence, in the Fourier space
we have

ût = −ξ2û + ûp, ∀ξ, (11)

where ξ is the Fourier wave-number and the coefficients c = −ǫξ2 < 0 span over a wide
range of values when all the Fourier modes are considered. For high values of |ξ|, the
solutions are attracted to the slow manifold quickly because c < 0 and |c| ≪ 1.

In figure 1 we display the boundary stability regions in the complex plane x, for
y = 0,−0.9,−5,−10,−18, which are similar to figures 3.2, 3.3 and 3.4 of [5]. When the
linear part is zero (y = 0), we recognized the stability region of the fourth-order Runge-
Kutta methods and, as y → −∞, the region grows. Of course, these regions only give an
indication of the stability of the ETDRK4 method.
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Figure 1: Boundary of stability regions for several negative y

In fact, for y < 0, |y| ≪ 1, the observed boundaries approach to ellipses whose para-
meters have been fitted numerically with the following expression:

(Re(x))2 +

(
Im(x)

0.7

)2

= y2. (12)

Then, the spectrum of the linear operator increases as ξ2, while the eigenvalues of the
linearization of the nonlinear part lay on the imaginary axis and increase as ξ. On the other
hand, according to (12), when Re(x) = 0, the intersection with the imaginary axis Im(x)
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increases as |y|, i.e., as ξ2. Since the boundary of stability grows faster than x, the ETDRK4
method should have a very good behavior to solve dissipative equation, which confirms
the results of paper [12]. A similar analysis is applicable to other dissipative equations
like, for instance, the Kuramoto-Sivashinsky equation or the Allen-Cahn equation of [4]
or [12], where h = 1/4.

In our first example, we consider p = 2 and the initial condition

u0(x) = 6.05 exp(−20x2), (13)

which is symmetric with respect to the origin and has a single maximum at x = 0, hence
satisfying the hypotheses of [9] under which the asymptotic behavior is known. On the
left-hand side of figure 2 we have displayed the evolution of this initial condition from
t = 0 to t = 0.95; a bit later, u(0, 1) ≈ 6 × 1010. The computer time was about 1.853
seconds.

On the other hand, on the right-hand side of figure 2, we have displayed the numerical
solution at t = 0.99 with continuous line and the estimate from [9] with discontinuous line.
The resemblances near the origin are evident.
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Figure 2: Numerical solution with u0(x) = 6.05 exp(−20x2)

In the following case, we look for an example where the solution blows up in two points.
In figure 3, we represent the numerical solutions for 0 ≤ t ≤ 3.5 with the initial condition

u0(x) = 3 exp(−20(x + 4)2) + exp(−20(x + 1)2) + 2.05 exp(−10(x − 4)2). (14)

On the right-hand side, we have drawn the solution at t = 3.5 and the initial condition.
In this case we do not know the asymptotic estimates, but in theorem 3 of [9], they have
proved an asymptotic behavior close to the Hermite polynomials; in fact, the shape of the
plot is similar to that of −H4(x) (see figure 17.3 of [2]), although we ignore the scale that
should be applied.

Bearing in mind the good behavior of our simulation for the one-dimensional problem
and the fact that MATLAB c© also implements higher dimensional discrete Fourier trans-
forms and their inverses (in two variables, we have fft2 and ifft2), we thought that small
modifications of our program would allow us to simulate the blow-up for the semi-lineal
parabolic equation in two space variables:

ut = uxx + uyy + up, p > 1, (x, y) ∈ R
2, t > 0. (15)
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Figure 3: Numerical solution for initial condition (14)

In this case, the critical exponent is pc = 2, so we have taken p = 1.5 for our numerical
experiments.

For the sake of space, we only display one numerical example. In figure 4, we can
observe the evolution of the initial condition

u0(x, y) = 10 exp(−10((x + 1)2 + (y + 1)2) + 10 exp(−10((x − 1)2 + (y − 1)2), (16)

which is symmetric respect to the origin.

Figure 4: Numerical solution for initial condition (16)

In http://www.ehu.es/~mepvaarf, the reader can find the movies corresponding to
the previous experiments, as well as the original MATLAB c© code etdrk42dchoise.m,
which offers the option to introduce other initial conditions.
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